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ON CERTAIN PROPERTIES OF SOLUTIONS OF SINGULARLY PERTURBED SYSTEMS 

IN A PARTICULAR CRITICAL CASE* 

L.K. KUZ'MINA 

Systems defined by differential equations with a small parameter at derivatives are 
considered. Methods of the theory of motion stability are used for showing that in 

the critical Liapunov case of several zero roots solution of the problemofstabil- 

ity for a complete system can be reduced to solving the problem for an approximate 

system of a lower order, taken as the simplified problem. Conditions under which 
the respective solutions of the complete and the simplified systems are close to 

each other in an infinite interval of time are presented. Gyroscopic systems con- 
taining gyroscopes with large proper moment of momentum are used as an example of 

application. Respective conditions are obtained for gyrostabilization systems in 
the critical case of zero roots. Equations of the theory of precession are taken 
as simplified equations. 

1. We consider systems whose perturbed motion are defined by differential equations re- 

duced to the form 

where ?I, zp, za, z are IZ~-, nz-, ns-, ni -dimensional vectors, z = (1 xl, x2, tg IIT, T denotes transposi- 

tion, P is a small positive parameter, Pi (p) (i = 1,.2,3) are matrices of corresponding dimen- 

sions whose elements are continuous functions ofy, Z,X,(i = 1,2,3)are vector functions holo- 

morphic (in some domain) in the totality of variables Z,Z, which do not contain in their 

expansions terms of power lower than the second, whose coefficients are continuous bounded 

functions of t and p. Let 2 (t, p, z, 0) = 0, X, (t, p, Z, 0) = 0 (i = 1,2,3). 
Let us take as the simplified system that which is obtained from system (1.1) by retain- 

ing in its equations only temls that contain 11 of power not exceeding the first 

o= pr*z -1 x1*, I+ =p2*2 + ix,* (1.21 

&x3 
dt = p3*x f x,*,1 + = z* 

where the asterisk denotes terms retained in (1.1). 
The characteristic equation of the first approximation of system (1.1) has m zero roots. 

The remaining roots are obtained from the equation 

pZhE - I’,, - PlZ - PI3 

D (L ,p) = - 1)21 phE- Pm --~a = 0 (1.3) 

- ps1 - p32 hE - P33 

where Pij is a submatrixofmatrix PI ofdimension niXnj(i, j=l,2,3), with D(h, p) represented 
form 

where f1 (h,p) is a polynomial in h which is obtained from D (h, FL), 8 when in each element of 

the detemlinant only temrs that contain p in power not higher than the first are taken into 

account. 
The characteristic equation for system (1.2) is of the form hmD*(h,k) = 0, where D* (h, p) 

= fI(h, p). We shall call equation 
- 
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the shortened equation. 

System (1.2) and its 

D* (h, p) = 0 (1.4) 

corresponding shortened equation are of a lower order than the com- 

plete system (1.1) and Eq.Cl.3). Let us investigate the conditions under which stability of 

the zero solution of the simplified system (1.2) ensures the stability of zero solution of 

the complete system. A problem of this type was considered in /l/ in the case when the 

degenerate system obtained from (1.1) with p = 0 was used as the simplified system. The 

problem formulated here is of independent interest in applications. 

To solve this problem we use the methods applied in /l/. We denote by h and h, the roots 

of Eqs.(1.3) and (1.4), respectively. From the proof given in /l/ follows that: 

when D (090) # 0 I n3 roots h and h, approach ho roots of the degenerate equation 

D (h, 0) = 0 as p-e 0, and at the limit are equal to them; 

n2 roots of these equations can be represented in the form h = a(p)/)_~ and rZ, = a,(tl)/p, 

respectively, where CC(~) and a, (I) approach values of a, roots of the equation 

d (a) = 
PII ((9 PI2 (0) 
- pzl (1)) aE - PYB (0) = I 0 (1.5) 

when I P,,(O) I # 0 and p-fo, and at the limit are equal to them. Evaluation of the error 

Ah = h-k,,, Ah, = J., - &, for roots of the first group and of Aa = a -a,, Aa, = a* - a, for 
the second group enables us to show that for fairly small values ofparameter 1-1 (nZ + rz3) the 

roots of equation D (h, r_l) = 0 have negative real parts, if the shortened equation satisfies 

the Hurwitz conditions. The remaining n, roots of Eq.tl.3) with fairly small ~1 have negative 

real parts when the equation 

I BE -p,, 63 I = 0 (1.6) 

satisfies the Hurwitz conditions. 

Taking this into account and reasoning as in /l/ enables us by applying the Liapunov 

theorem /2/ to show that the following theorem is valid. 

Theorem 1. If for D(0, 0)# 0 Eq.Cl.6) satisfies the Hurwitz conditions, and the roots 

of the characteristic equation of the simplified system have negative real parts (except the 

m zero roots), then for fairly small k the stability of the zero solution of the simplified 

system (1.2) implies stability of the zero solution of system (1.1). 

Note that in that case solution z = C, x = 0, where 11 Cl/ is fairly small, is also stable. 

2. The theorem in Sect.1 enables us to use for solving the stability problem the system 

of simplified differential equations of a lower order than the complete system. The method 

used for prooving that theorem makes possible the evaluation of the upper limit of admissible 

values of parameter p for which the above statement is valid. 

From the viewpoint of application the problem of establishing the closeness of solutions 

of such systems is interesting. Suppose that the respective input data that define the solu- 

tion of the complete (1.1) and simplified (1.2) systems are close to each other (or coincide). 

Under what conditions these solutions remain close over an infinite time interval? Problems 

of this type(on the admissibility to use a simplified system obtained by that or other method) 

were considered by many authors (e.g., /3--6/J. 

We denote by z = s(t, P),Z = z (t,~) the solution of system (1.1) with initial conditions 

5 (to, p) = 50, z (to, p) = z,,; with z* = Z* (t, p), z* = Z* (t,~) re p resenting the solution of the 'simpli- 
fied system (1.2) defined by the initial conditions G* @ll, CL) = %I*, X3* (to, IL) = 530*, z* (to, 

p) = zCJ*. Here .rl* = fl (t, p, z*, x2*, x3*), where x1 = fl (t, p, Z, x2, x3) is the solution of the 
algebraic equation in system (1.2) 

0 = &*x1 + Plz*X2 -1 P1s*s, + x1* (2.1) 

Theorem 2. If for D(O,O)# 0 Eqs.Cl.4) and (1.6) satisfy the Hurwitz conditions, then 

for the specified in advance numbers s> 0 and 6> 0‘ there exists a p* such that when O( p 

< c1* and t> t, > to we have in the perturbed motion 

if 
11 z - z* II < s, 11 Z - Z* II< E 

52 (to7 PL) = rz* (to, p), r3 (to, p) = z3* (to, p) 

7, (toa IL) = z* (to, p), II Xl (to, CL) - %* (to, p) II < 6 

By suitable selection of the small p, t, canbemade as close as desired to t,. 
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Proof. Consider the simplified system (1.2). Equation (2.1) under the stated above 
conditions and fairly small P admits in conformity with the theorem on implicit function the 

unique solution z1 =r fl (t, IL, Z, m2, ~3) in the form of a holomorphic function of variables X%,X, 
with coefficients dependent on t, p,z , and vanishing when z2 = 0,x, = 0. Substituting this 
solution into the differential equations of system (1.2), we obtain 

(2.2) 

where the nonlinear terms X,',X,',z' vanish at -T? = 0, X3 = 0. Under these conditions the zero 
solution of system (2.2) is stable, as implied by the respective Liapunov theorem /2/. In 
perturbed motion we then have X2* + 0, ra* --f 0, z* --t c* and C* is an arbitrary constant m- 
dimensional vector defined by thcinput data. Moreover, system (1.1) is of the type of 
Liapunov systems /2/. It follows from Sect.1 that with fairly small p all conditions of the 
Liapunov theorem are satisfied for it, and in the perturbed motion r-+0, s-c, 

Note that the integral 

z -t- F (t, p, z, x) = A 
(2.3) 

occurs in the case of the complete system, and the integral 

2 + cp (t, P, z, 12, 53) = B (2.4) 

holds for the simplified system. In these integrals F and cp are holomorphic vector functions 
that vanish at x=0, and X2 = 0, xJ = 0, respectively. Their expansions do not contain 
terms lower than the second power in 2.2, and A and Bare arbitrary constant vectors. 

Consider solutions of systems (1.1) and (2.2) with fairly small CL, setting %J =5?0*, 
530 = &l*, 20 = zo*. We introduce variables u=z - z*, bi = xi -xi* (i = 1,2,3), and shall consider 

the differential equations in variables b, that correspond to noncritical variables which we 

obtain using Eqs.(l.l) and (2.2) and their integrals 

db,ldt = B, 0, y, b,, b,, k,) 

System (2.5) has no trivial solutions, and its right-hand sides vanish when p = 0. 

bi = 0 (i = I, 2, 3). 
Let us investigate the behavior of variables a, b over an infinite time interval. In 

conformity with the statement of the problem a (to) = 0, bj (to = 0 (j 12, 3), and 11 b, (t,)Ij < 6, 6 
> Ois a number specified in advance. The analysis of system (2.5) and of the structure of 

integrals (2.3) and (2.4) will show that under the indicated conditions the derived solutions 

have the following property. In the case of specified in advance numbers E and 6 thereexists 

a number p*> 0 such that for all t> t,> to the inequalities IIsl)< &,/I bll< c are satisfied 

when the input data satisfy the adduced relations and when p< pL*. The theorem is proved. 

Let us evaluate t,. For this we substitute in the right-hand side of the differential 

equation for the variable b, of system (2.5) the solution bi = bi (t, p)(i = 1,2,3). Inteqrat- 

ing the obtained identity in which B, (t, ~1, b,(t, IL), b,(t, p), b,(t, p)) is a continuous function 
of t in limits from t, to t,, we obtain the relation 

11' (01, - b,,) m= &' (t* - to) 

where B1’ is a vector with components 

Bi' (tlj) (i = 1, . . .I a,); to < LIP < t*, b,, = b, (t*), b,, x b, (to); II b,* II .< 6, II b,o II < 6. 
By virtue of continuity for TV [to, * t ] we have ml-: I B,jI;( M, (j = 1,..., nl), where m,and M, are 

positive constants. 

Selecting 5 > 0 p < m,El(~ -!- 6) as the specified in advance number, we obtain the estimate: 

(t* - GJ) < 5. 

Remarks lo. Using the equations of system (2.5) and integrals (2.3) and (2.4) it is 
possible to show that for fairly small bh relations II~II<E,II b,I/<~,lIbdl<~ hold for all t com- 

mencing with to. 
2O. It can be shown that the theorem remains generally valid, even when the input data 

that determine the solutions of the complete and simplified systems are not the same. In 
such case the following statement is valid. If D(O,O)#O and Eqs.(1.4) and (1.6) satisfy the 

Hurwitz conditions, then for the specified in advance numbers E and 6 there exist v* and 11 

such that in perturbed motion with O<p<p* and t>t,>t, 
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II 21 (kl? CL! - x1* (to. r) II< 6. n.? (Lx r) - 12; (63. PO II< 9 

II 33 (to? P) - ?3* VO? P) II< rl? II2 (&I. p) - 2’ (b> p) II < q 

By a suitable selection of the small,p, t, can be made as close to f, as desired. 

3. As an example of application of obtained results, we consider gyroscopic systems 

containing gyroscopesofhigh proper moments of momentum. Since the differential equations of 

motion of such systems are complex, therefore their analysis is carried out in practice using 

approximate methods which must be rigorously substantiated. Particular difficulties arise in 

the analysis of systems of gyroscopic stabilization, such as those considered below. 

We consider systems such as electromechanical ones on fixed bases thatcontaingyroscopes, 

taking into account some of the actual properties of their elements, as in /7/. Forourmodel 

the differential equations of perturbed motion are of the form 

-$ Uq'Af t (0” + g”) 4.84’ = QM' t Qv” 
(3.1) 

(the notation of /7/ is retained, but without parametric perturbations). In these equations 

q~ is the n-dimensional vector of generalized mechanical coordinates, q,(i = 1,...,4) are 

vectors whose components are, respectively, the gyroscope precession angles, angles of devia- 

tion of the gyroscope proper rotation from their values is stable motion, the angles of turn 

of rotors of stabilizing motors, and deformation of elastic elements /7/; qr is the u-dim- 

ensional vector of generalized electrical coordinates. 
All functions in (3.1) are assumed to be holomorphic in totality of variables in some 

domain, with QM" (w, qiw', qE’), QE” h, QM , qr')nonlinear vector functions that do not containterms 

of power lower than the second. The small circle superscript denotes terms of zero order in 

expansions of respective functions. 
Let us consider systems that contain gyroscopeswithlarge proper moments of momentum, 

and assume that g = g*H, where H is a large positive dimensionless parameter. We denote the 

small parameter by p = H-‘. 
We introduce, as in /l/, the new time r = pt and carry out the substitution of variables 

12 = LqE', 53 = q1, x4 = qr 

where a,, b,, g, are submatrices of dimension m x n of matrices a, b, g, respectively. In the 

new variables system (3.1) is of the form 

% 
l"z ds = - (CLb' + g')x1 + X,%1' + Xnl" (3.2) 

p % = - p.B’xl - R'xz + XE’ + XEn 

dx,ldT = d,x,, dx,ldt = d,x,, dz /dz = 2 

where the prime denotes transformed matrices, Xnl'and Xr' are functions Qni’ and Q,’ in terms 
of respective new variables, and Z, XM”,XE” are holomorphic vector functions whose expansions 

do not contain terms of power lower than the second, and 

z (51 = 0) = 0, XnY (x = 0) = 0, XEn (x = 0) = 0; z = 11 Xl, x*, z3, x4 IIT 

System (3.2) is of the form of system (1.1). As in Sect.1, we consider as approximate 
the system which we obtain from (3.2), retaining in equations of the latter only terms that 
contain P of power not higher than the first. We denote this approximate system by (3.2),, 
without presenting it in explicit form. 

In the old variables the corresponding system is 

dqM 
(p + 8) dt = QM' -i QM" 

-& JkE' + B”qz’ + R"~E' = QE’+ QE” 

(3.3) 



300 

which we take as the simplified one. Note that Eqs.(3.3) coincide with the precession equa- 
tions used in the applied theory of gyroscopes. These equations appear, for instance, in /8 
-lo/. 

Applying the results of Sects.1 and 2, and takingintoaccount the singularities of gyro- 
scopic systems indicated in /l/, it is possible to show that when 1 g" 1 i_ 0, 1 ga, I[z,:'; ,;,,‘# 0 , 
in spite of m zero roots, the remaining roots of the characteristic equation ,3f the first 
approximation system for (3.2), lie in the left-hand half-plane, and the equation 1 fifi + ytI' .I 
g' / = 0 satisfies the Hurwitz conditions, then for fairly small u stability of the zero solu- 
tion of the approximate system (3.2), ensures, also, the stability of the zero solution of 
the complete system (3.2). 

Reverting to old variables and taking into account that the nonsingular uniformlyregular 

transformation of variables retains stability properties, we obtain for the considered here 

gyroscopic systems the following theorem (the asterisk denotes the solution of system (3.3), 

and cl~'* = i.\l (qlw*, qr'*). where j,,, is the solution of equation (b" -1 g')q,%,' = (I,,,’ (jar” for CJ,~,'): 

TheoreIz 3. If for jg’ I#O, Igh,’ Ii,y:‘s ;‘,‘#O all roots, except the m zero ones, of the 

characteristic equations of the simplifiedsystem (3.3) have negative real parts, and the equa- 

tion 

1 a’h -- 0’ -i g‘ I - 0 
(3.4) 

satisfies the Hurwitz conditions, then for fairly large parameter H the stability of the zero 

solution of the simplified system (3.3) implies the stability of zero solutionofthe complete 

system (3.1), and for any numbers a) 0 and a>() and all H>H, the inequalities 

'* 
IlQ.lr - Qn1 II X s, /I Q.\r -4;r H -: e, II QE' - &+ I/ <F 

are satisfied in the case of perturbed motion for t>t*>tO, if 

II 46ro - 4:” II < 69 4MO = c&o. QEO = & 
By an appropriate selection of large H, t, can be made as close to to as desired. 
The theorem was obtained for the particular case when input conditions in terms Of gen- 

eralized mechanical coordinates and electrical generalized velocities for the complete and 

the simplified systems are the same. In conformity with remarks in Sect.2 the theorem canbe 

extended to the case of different input data. Then for all t~[~t,,n) we have !IYE' - YE'* II i F. 
I/ 431 - 'IM* II <E 

The described here investigations complement the results previously obtained in /8,11, 

12/. 
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